
Understanding Deep Architectures 
with Reasoning Layer

Xinshi Chen1, Yufei Zhang2, Christoph Reisinger2, Le Song1

1Georgia Institute of Technology,   2University of Oxford

NeurIPS 2020



𝒚𝒕#𝟏

GD∇𝐸'(𝒚𝒕#𝟏)

𝒚𝒕

GD∇𝐸'(𝒚𝒕)

𝒚𝒕*𝟏

GD∇𝐸'(𝒚𝒕*𝟏)

Unrolled Algorithm As A Layer

Unrolling

An algorithm can be unrolled and truncated and then used as a specialized layer in the 
deep learning model.

Iterative Algorithm (Gradient Descent)

For 𝑘 = 1,2, … do

Done

𝒚1*2 ← 𝒚4 − 𝑠∇𝐸(𝒚4)

𝐲∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝒚 𝑬∗(𝒚)
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Ex 1: MAML (Model-Agnostic Meta-Learning)
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𝜃A
ℒ(𝜃, 𝑖𝑚𝑎𝑔𝑒𝑠)

𝜃2 = 𝜃A − 𝑠∇'ℒ(𝜃A, 𝑖𝑚𝑎𝑔𝑒𝑠)

𝜃H = 𝜃2 − 𝑠∇'ℒ(𝜃2, 𝑖𝑚𝑎𝑔𝑒𝑠)
……

𝜃4

(input)

(output)

Convolutional Neural Network

𝑘-step
Gradient Descent

𝑘 → ∞ implicit-MAML



Ex 2: RNA Secondary Structure Prediction

RNA secondary structure prediction
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𝒙 = 𝑥2, 𝑥H, … , 𝑥M 𝑬𝜽(𝒙, 𝑨)

Transformer 
& Convolution Unrolled Algorithm

𝑨∗

Encode complex sequence 
information and dependency

Highly expressive module

• Enforces the constraints 
• Restrict the output space

Highly structured module

𝑨∗ ≈ argmin𝑨∈𝒜𝑬𝜽(𝒙, 𝑨)

s.t. 𝑀(𝑥) ∘ 𝐴 = 𝐴
𝐴\ = 𝐴
𝐴𝟏 ≤ 𝟏
𝐴 ≥ 0

min
𝑨∈[𝟎,𝟏]𝑳×𝑳

𝑬𝜽(𝒙, 𝑨) + 𝝆 𝑨 𝟏
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Ex 2: E2Efold -- Constrained Optimization Solver as a Layer



Hybrid Architecture

End-to-end differentiable 
architecture trained with 

(𝑥, 𝑦∗) pairs

• Model complex information 
of the inputs

• Unrolled iterative algorithms
• Executes prescribed operations
• Interpretable

time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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Hybrid Architecture

𝒚∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝒚 𝑬∗(𝒙, 𝒚)

some unknown 
energy function

𝒙

𝑬∗(𝒙, 𝒚)

optimization over 𝑦

Approximate

time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional
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energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
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the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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Questions

Representation & 
generalization ability of the 

overall hybrid model

• Different algorithms can solve 
the SAME reasoning task

• How are they different from 
each other when used as a 
reasoning module?

7

Algorithm properties
• convergence
• stability
• sensitivity

Effects? Relation?

time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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the notion of direct (p(y|x)) and inverse design
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challenging to create than directML approaches,
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There are several ways of building generative
models, but for the purposes of this Review, we
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ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,
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in turn determine the types of tools available and
the types of information that can be exploited in
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Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
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etry, and curvature of the potential energy
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Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.
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Problem Setting: Optimization Module + Neural Energy Module

• We restrict to the case when 𝑬𝜃(𝒙, 𝒚) is a quadratic function in 𝒚.
- 𝑬𝜃 (𝒙, 𝒚) =

2
H
𝒚⊤𝑸𝜃 𝒙 𝒚 + 𝒚⊤𝒃, where 𝑸𝜃(𝒙) is a neural network.

• Ground-truth model is 𝒚∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝒚 𝑬∗(𝒙, 𝒚) for some unknown energy function 𝑬∗

• Training dataset contains 𝑛 many input-output pairs (𝒙, 𝒚∗), without intermediate supervision on 𝑬∗

𝑨𝒍𝒈𝝓𝒌 (𝑬𝜃(𝒙, 𝒚 ) )
Neural Energy 

Unrolled Optimization Algorithm
• 𝜃 : parameters in the neural module
• 𝜙 : step size in the unrolled algorithm
• 𝑘 : number of unrolled iterations
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How To Design The Reasoning Module (Algorithm Layer)?

𝑵𝑨𝑮𝝓𝒌 (𝑬𝜃(𝒙, 𝒚 ))

• Different optimization algorithms, which one is better?

?𝑮𝑫𝝓𝒌 (𝑬𝜃(𝒙, 𝒚 ))

9

𝐴𝑙𝑔 = Gradient Descent 𝐴𝑙𝑔 = Nesterov's Accelerated Gradient

• More iterations 𝑘, the better?

𝑮𝑫𝝓u(𝑬𝜃(𝒙, 𝒚 ) ) = 𝐚𝐫𝐠𝐦𝐢𝐧𝒚 (𝑬𝜃(𝒙, 𝒚 ) )

Equilibrium model

𝑮𝑫𝝓𝒌 (𝑬𝜃(𝒙, 𝒚 )) ?



Algorithm Property
1) Convergence

- portrays how fast the optimization error decreases ask the number of iterations 𝑘 grows.

∥ 𝐴𝑙𝑔w4(𝐸(𝑥, 𝑦 )) − argminy(𝐸(𝑥, 𝑦)) ∥ ≤ 𝑪𝒗𝒈 𝒌,𝝓 ∥ 𝐴𝑙𝑔wA 𝐸 𝑥, 𝑦 − argminy(𝐸 𝑥, 𝑦 ) ∥

10

2) Stability
- characterizes its robustness to small perturbations in the optimization objective 𝑬𝜃(𝒙, 𝒚).

∥ 𝐴𝑙𝑔w4 (𝐸 (𝑥, 𝑦 )) − 𝐴𝑙𝑔w4( {𝐸(𝑥, 𝑦)) ∥ ≤ 𝑺𝒕𝒂𝒃(𝒌,𝝓) ∥ 𝐸 − {𝐸 ∥ ∞

3) Sensitivity
- characterizes its robustness to small perturbations in the step size 𝜙 in the algorithm

∥ 𝐴𝑙𝑔w4 (𝐸(𝑥, 𝑦)) − 𝐴𝑙𝑔~4(𝐸(𝑥, 𝑦)) ∥ ≤ 𝑺𝒆𝒏𝒔(𝒌) ∣ 𝜙 − 𝜑 ∣

- Robustness to perturbations in parameters is referred in the deep learning community to 
“parameter perturbation error” or “sharpness”.



GD and NAG: Algorithm Property Comparison

NAG 
converges 

faster 

GD 
more 
stable 

NAG 
less  

sensitive 

Faster algorithm less stable 11



Local Rademacher complexity of 𝑨𝒍𝒈𝝓𝒌 (𝑬'(𝒙, 𝒚 ) )

12

Main Theorem: Local Rademacher Complexity

stability convergence sensitivity

complexity of
neural module



Implication I

13

Over-
parametrization
𝐶1 , 𝐶2 , 𝐶3 large

Under-
parametrization
𝐶1 , 𝐶2 , 𝐶3 small

• Bound is dominated by 𝑆𝑡𝑎𝑏(𝑘)

• More iterations (𝑘 → ∞), worse generalization

• Fix 𝑘, GD generalize better than NAG



Implication II
• Bound is dominated by the product 𝑆𝑡𝑎𝑏 𝑘 ∗ 𝐶𝑣𝑔(𝑘)

• More iterations (𝑘 large) better generalization

14

About-right parameterization
𝐶1 , 𝐶2 , 𝐶3 not large or small

product



Good Fit between Experiments and Theory

• Generalization gaps, when varying the hidden dimension of the neural module.

• Corresponds to the theoretically analyzed algorithm properties:

Align well with the implication of our theorem!
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See more details in our paper:

16

Understanding Deep Architecture With Reasoning Layer
https://papers.nips.cc/paper/2020/file/0d82627e10660af39ea7eb69c3568955-Paper.pdf

Q&A!

https://papers.nips.cc/paper/2020/file/0d82627e10660af39ea7eb69c3568955-Paper.pdf
https://papers.nips.cc/paper/2020/file/0d82627e10660af39ea7eb69c3568955-Paper.pdf

