Understanding Deep Architectures with Reasoning Layer

Xinshi Chen¹, Yufei Zhang², Christoph Reisinger², Le Song¹

¹Georgia Institute of Technology, ²University of Oxford

NeurIPS 2020

Unrolled Algorithm As A Layer

An algorithm can be unrolled and truncated and then used as a specialized layer in the deep learning model.

Ex 1: MAML (Model-Agnostic Meta-Learning)

Ex 2: RNA Secondary Structure Prediction

RNA secondary structure prediction

Ex 2: E2Efold -- Constrained Optimization Solver as a Layer

Chen, Xinshi, et al. "RNA Secondary Structure Prediction By Learning Unrolled Algorithms." ICLR 2019

Hybrid Architecture

- Unrolled iterative algorithms
- Executes prescribed
- Interpretable

• Model complex information of the inputs

End-to-end differentiable architecture trained with (x, y^*) pairs

Hybrid Architecture

Questions

- Different algorithms can solve the SAME reasoning task
- How are they differ each other when use reasoning module?

Problem Setting: Optimization Module + Neural Energy Module

Unrolled **Optimization** Algorithm

$$\overline{Alg_{\phi}^{k}}(\underline{E_{\theta}(x,y)}))$$

Neural Energy

- θ : parameters in the neural module
- ϕ : step size in the unrolled algorithm
- *k* : number of unrolled iterations

- We restrict to the case when $E_{\theta}(x, y)$ is a quadratic function in y. - $E_{\theta}(x, y) = \frac{1}{2} y^{\mathsf{T}} Q_{\theta}(x) y + y^{\mathsf{T}} b$, where $Q_{\theta}(x)$ is a neural network.
- Ground-truth model is $y^* = \operatorname{argmin}_y E^*(x, y)$ for some unknown energy function E^*
- Training dataset contains n many input-output pairs (x, y^*) , without intermediate supervision on E^*

How To Design The Reasoning Module (Algorithm Layer)?

• Different optimization algorithms, which one is better?

Alg = Gradient Descent $GD_{\phi}^{k}(E_{\theta}(x, y))$?

Alg = Nesterov's Accelerated Gradient $NAG_{\phi}^{k}(E_{\theta}(x, y))$

• More iterations *k*, the better?

$$GD_{\phi}^{k}(E_{\theta}(x, y)) \qquad ?$$

Equilibrium model

 $GD_{\phi}^{\infty}(E_{\theta}(x, y)) = \operatorname{argmin}_{y}(E_{\theta}(x, y))$

Algorithm Property

1) Convergence

- portrays how fast the optimization error decreases ask the number of iterations k grows.

 $\|Alg_{\phi}^{k}(E(x,y)) - \operatorname{argmin}_{y}(E(x,y))\| \leq C \nu g(k,\phi) \|Alg_{\phi}^{0}(E(x,y)) - \operatorname{argmin}_{y}(E(x,y))\|$

- 2) Stability
 - characterizes its robustness to small perturbations in the optimization objective $E_{\theta}(x, y)$.

$$\|Alg_{\phi}^{k}(E(x,y)) - Alg_{\phi}^{k}(\widehat{E}(x,y))\| \leq Stab(k,\phi) \| E - \widehat{E} \|_{\infty}$$

3) Sensitivity

- characterizes its robustness to small perturbations in the step size ϕ in the algorithm

$$\|Alg_{\phi}^{k}(E(x,y)) - Alg_{\varphi}^{k}(E(x,y))\| \leq Sens(k) |\phi - \phi|$$

- Robustness to perturbations in parameters is referred in the deep learning community to "parameter perturbation error" or "sharpness".

GD and NAG: Algorithm Property Comparison

Faster algorithm less stable

Main Theorem: Local Rademacher Complexity

Local Rademacher complexity of $Alg_{\phi}^{k}(E_{\theta}(x, y))$

Implication I

Overparametrization C_1 , C_2 , C_3 large Underparametrization C_1 , C_2 , C_3 small

- Bound is dominated by *Stab(k)*
- More iterations $(k \rightarrow \infty)$, worse generalization
- Fix *k*, GD generalize better than NAG

Implication II

About-right parameterization

 C_1 , C_2 , C_3 not large or small

- Bound is dominated by the product Stab(k) * Cvg(k)
- More iterations (*k* large) better generalization

Good Fit between Experiments and Theory

• Generalization gaps, when varying the *hidden dimension* of the neural module.

• Corresponds to the theoretically analyzed algorithm properties:

Align well with the implication of our theorem!

See more details in our paper:

<u>Understanding Deep Architecture With Reasoning Layer</u> <u>https://papers.nips.cc/paper/2020/file/0d82627e10660af39ea7eb69c3568955-Paper.pdf</u>

Q&A!