RNA Secondary Structure Prediction By Learning Unrolled Algorithms

Xinshi Chen*¹, Yu Li*², Ramzan Umarov², Xin Gao², Le Song^{1,3} ¹Georgia Tech, ²KAUST, ³Ant Financial ICLR 2020

* Equal contribution

Ribonucleic Acid (RNA)

RNA (Ribonucleic acid)

RNA Virus (e.g., COVID-19)

RNA Primary Structure

Primary Structure

$$x = (x_1, x_2, ..., x_L), \qquad x_i \in \{A, U, C, G\}$$

RNA Secondary Structure

Secondary Structure

$\boldsymbol{A}^* \in \{0,1\}^{L \times L}$

 $A^*(i,j) = 1$ if the bases (x_i, x_j) are paired.

RNA Secondary Structure

 $\boldsymbol{A}^* \in \{0,1\}^{L \times L}$

 $A^*(i,j) = 1$ if the bases (x_i, x_j) are paired.

High Order Structures of RNA

 $x = (x_1, x_2, ..., x_L)$ $A^* \in \{0, 1\}^{L \times L}$

RNA Secondary Structure Prediction

 $\mathbf{A}^* = \operatorname*{argmin}_{A \in \{0,1\}^{L \times L}} E(\mathbf{x}, \mathbf{A})$

E(*x*, *A*) can be inaccurate
Intractable minimization (exponential in *L*)

 $A^* = \operatorname{argmin}_{A \in \{0,1\}^{L \times L}} E(x, A)$ $\xrightarrow{A \in \{0,1\}^{L \times L}} A \in \operatorname{Nested Structures}$

X E(x, A) can be inaccurate X Intractable minimization (exponential in L)

Assume *A*^{*} has a *<u>nested structure</u>*

 $A^* = \operatorname{argmin}_{A \in \{0,1\}^{L \times L}} E(\mathbf{x}, A)$ $\underline{A \in \operatorname{Nested Structures}}$

X E(x, A) can be inaccurate X Intractable minimization (exponential in L)

Assume *A*^{*} has a *<u>nested structure</u>*

- ✓ Dynamic programming (DP)
- \checkmark Tractable minimization $O(L^3)$

X Cannot handle more complicated structures (**pseudoknots**)
 X $O(L^3)$ is still slow

• Deep Network F_{θ}

Can predict both nested structures and pesudoknots

 \checkmark Avoids the expensive minimization step

• Deep Network F_{θ}

New Challenges

- RNA secondary structure A^* needs to obey some hard constraints.
 - Only {A U, C G, G U} are valid pairings.
 - ➢ No sharp loops are allowed.
 - > No overlap of pairs is allowed, i.e., it is a matching.

• Deep Network F_{θ}

New Challenges

- RNA secondary structure A^* needs to obey some hard constraints. \star How to make the output of F_{θ} satisfy the constraints?

• Deep Network F_{θ}

New Challenges

- RNA secondary structure A^* needs to obey some hard constraints. \star How to make the output of F_{θ} satisfy the constraints?
- The number of RNA data points is limited.
 - ★ Difficult to learn the constraints directly from data.
 - ★ Overfitting issue

E2Efold: Enforce Constraints with Deep Architecture

E2Efold: Enforce Constraints with Deep Architecture

Model Space Comparison

DP-based methods:

- $O(L^3)$ complexity
- Can not predict non-nested structures

A naïve neural network:

- Hard to enforce constraints
- Overfitting issue given limited data

E2Efold (our approach)

- Enforce constraints by using an unrolled algorithm in the architecture
- Restrict the output space

Equivalent unconstrained form

$$\min_{\lambda} \max_{\hat{A} \in [0,1]^{L \times L}} \underbrace{\frac{\mathcal{I}(\hat{A}) \coloneqq \frac{1}{2} (\hat{A} \circ \hat{A} + (\hat{A} \circ \hat{A})^{\mathsf{T}}) \circ M(\mathbf{x})}{\frac{1}{2} \langle U_{\theta}(\mathbf{x}), \mathcal{T}(\hat{A}) \rangle - \langle \boldsymbol{\lambda}, \operatorname{relu}(\mathcal{T}(\hat{A})\mathbf{1} - \mathbf{1}) \rangle - \rho \|\hat{A}\|_{1}}_{\coloneqq f(\mathbf{x}, \hat{A}, \lambda)}$$

Equivalent unconstrained form $\begin{aligned}
\mathcal{T}(\hat{A}) &\coloneqq \frac{1}{2} \left(\hat{A} \circ \hat{A} + \left(\hat{A} \circ \hat{A} \right)^{\mathsf{T}} \right) \circ M(\mathbf{x}) \\
\min_{\hat{A} \in \{0,1\}^{L \times L}} &\max_{\hat{Q}} \left\langle \boldsymbol{U}_{\boldsymbol{\theta}}(\mathbf{x}), \mathcal{T}(\hat{A}) \right\rangle - \left\langle \boldsymbol{\lambda}, \operatorname{relu}(\mathcal{T}(\hat{A})\mathbf{1} - \mathbf{1}) \right\rangle - \rho \left\| \hat{A} \right\|_{1}
\end{aligned}$ $\coloneqq f(\mathbf{x}, \hat{A}, \lambda)$ Algorithm for solving it (primal-dual) **Constraints are** satisfied! (primal update) $\hat{A} \leftarrow \eta_{\rho\alpha\gamma_{\alpha}^{t}} (\hat{A} + \alpha * \gamma_{\alpha}^{t} * \nabla_{\hat{A}} f(x, \hat{A}, \lambda))$ (dual update) $\lambda \leftarrow \lambda + \beta * \gamma_{\beta}^{t} * \operatorname{relu}(\mathcal{T}(\hat{A})\mathbf{1} - \mathbf{1})$ Â.λ

Unrolled Algorithm $\boldsymbol{U}_{\boldsymbol{\theta}}(\boldsymbol{x}), \hat{A}, \lambda, \boldsymbol{x}$ $\hat{A} \leftarrow \text{PrimalUpdate}(x, \hat{A}, \lambda)$ $\lambda \leftarrow \text{DualUpdate}(x, \hat{A}, \lambda)$ $\hat{A} \leftarrow \text{PrimalUpdate}(x, \hat{A}, \lambda)$ $\lambda \leftarrow \text{DualUpdate}(x, \hat{A}, \lambda)$

Unrolled Algorithm as Neural Network

each iteration → a recurrent cell number of iterations → number of layers hyperparameters → learnable parameters

K iterations

More structured

Constraints can be gradually enforced

The Overall Model of E2Efold

 Two component are coupled together

 $loss(A, A^*)$

✓ Jointly trained

Differentiable F1 Loss

- F1, precision, recall are commonly used evaluation metric
- But not differentiable.

• We define the following differentiable functions on $[0,1]^{L \times L}$

True Positive = $\langle A, A^* \rangle$, False Positive = $\langle A, 1 - A^* \rangle$ False Negative = $\langle 1 - A, A^* \rangle$, True Negative = $\langle 1 - A, 1 - A^* \rangle$

- F1 := $2\langle A, A^* \rangle / (2\langle A, A^* \rangle + \langle A, 1 A^* \rangle + \langle 1 A, A^* \rangle)$
- Directly optimize F1 score!
- Automatically handle the label-imbalanced (more negative samples) issue!

Overall Performance

RNAStralign data: 30451 RNAs from 8 families

Table 2: Results on RNAStralign test set. "(S)" indicates the results when one-position shift is allowed.

Method	Prec	Rec	F1	Prec(S)	Rec(S)	F1(S)
E2Efold	0.866	0.788	0.821	0.880	0.798	0.833
U_{θ} +PP	0.755	0.712	0.721	0.782	0.737	0.752
CDPfold	0.633	0.597	0.614	0.720	0.677	0.697
LinearFold	0.620	0.606	0.609	0.635	0.622	0.624
Mfold	0.450	0.398	0.420	0.463	0.409	0.433
RNAstructure	0.537	0.568	0.550	0.559	0.592	0.573
RNAfold	0.516	0.568	0.540	0.533	0.587	0.558
CONTRAfold	0.608	0.663	0.633	0.624	0.681	0.650

Around **20%** improvement

Pseudoknot Prediction

On RNAStralign dataset

Table 5: Evaluation of	pseudoknot	prediction
------------------------	------------	------------

Method	Set F1	TP	FP	TN	FN
E2Efold	0.710	1312	242	1271	0
RNAstructure	0.472	1248	307	983	286

25% improvement on pseudoknot prediction

Visualization of Predicted Structures

Inference Efficiency

 Table 4: Inference time on RNAStralign

Method		total run time	time per seq
E2Efold (Pyte	orch)	19m (GPU)	0.40s
CDPfold (Pyt	orch)	440m*32 threads	300.107s
LinearFold	(C)	20m	0.43s
Mfold	(C)	360m	7.65s
RNAstructure	(C)	3 days	142.02s
RNAfold	(C)	26m	0.55s
CONTRAfold	(C)	1 day	30.58s

Conclusion

- Unrolled algorithm to incorporate constraints in deep architecture design
- SOTA performance in RNA structure prediction, especially for pseudoknots
- Same strategy can be applied to other structured prediction problems
 - NLP (e.g., parsing)
 - CV (e.g., matching)

Paper https://openreview.net/forum?id=S1eALyrYDH

Github code https://github.com/ml4bio/e2efold