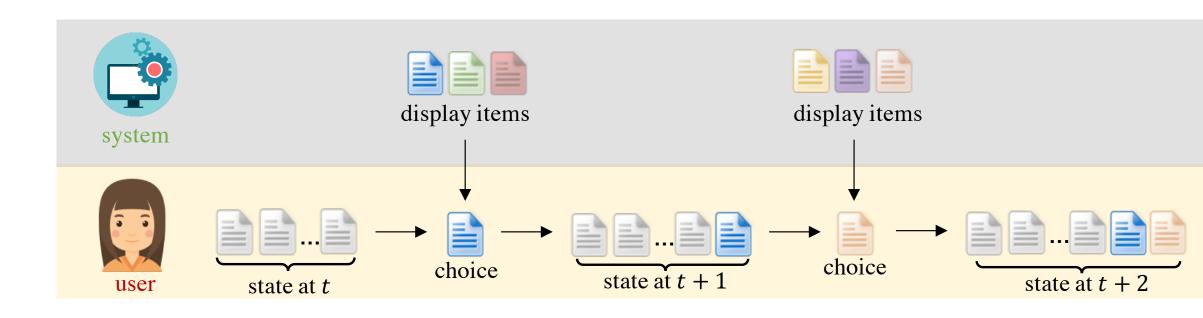


Introduction: RL for Recommendation



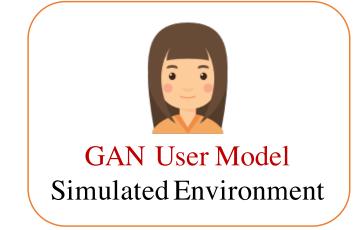
- A user's **interest evolves** over time based on what she observes.
- Recommender can significantly **influence such evolution**.
- **RL** based recommenders can consider user's **long term interest**.

Challenges.

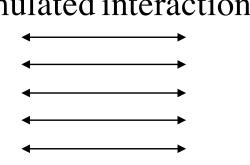
- User is the **environment** \implies Training of **RL** policy requires *lots* of interactions with users.
- **2** The **reward** function (a user's interest) is **unknown**.

Our Solution and Contribution

(1) GAN User Model as a Simulator.



simulated interaction



We propose

- A Generative Adversarial User Model
- to model user's *action*
- to recover user's *reward*
- Use GAN User Model as a **simulator** - to *pre-train* the **RL policy** offline.

(2) Fast Set Recommendation.

We design

• A cascading Q network to compute the optimal action in the *combinatorial action space* with only *linear* computation complexity.

Generative Adversarial User Model for **Reinforcement Learning Based Recommendation System**

Xinshi Chen^{1,†}, Shuang Li², Hui Li⁴, Shaohua Jiang⁴, Yuan Qi⁴, Le Song^{3,4}

 1 School of Mathematics, 2 Industrial and Systems Engineering, 3 College of Computing $\}$ at Georgia Institute of Technology, 4 Ant Financial Services Group [†]Work done partially during an internship at Ant Financial.

Generative Adversarial User Model

The user model consist of 2 components:

- **1** User's reward $r(s^t, a^t)$
- $-a^t$ is the clicked item.
- $-\mathbf{s}^{t}$ is user's experience (state).
- **2** User's strategy $\phi^*(s^t, \mathcal{A}^t)$
- $-\mathcal{A}^t$ contains items displayed by the system.

- She will make a choice according to a strategy $a^t \sim \phi^*$ to maximize her expected reward.

Generative User Model: $\phi^*(\boldsymbol{s}^t, \boldsymbol{\mathcal{A}}^t) = \arg \max_{\boldsymbol{\phi} \in \boldsymbol{\Lambda}^{k-1}} \mathbb{E}_{\phi} \left[r(\boldsymbol{s}^t, \boldsymbol{a}^t) \right] - R(\boldsymbol{\phi}) / \eta$

Model Parameterization.

Two architectures for aggregating historical information:

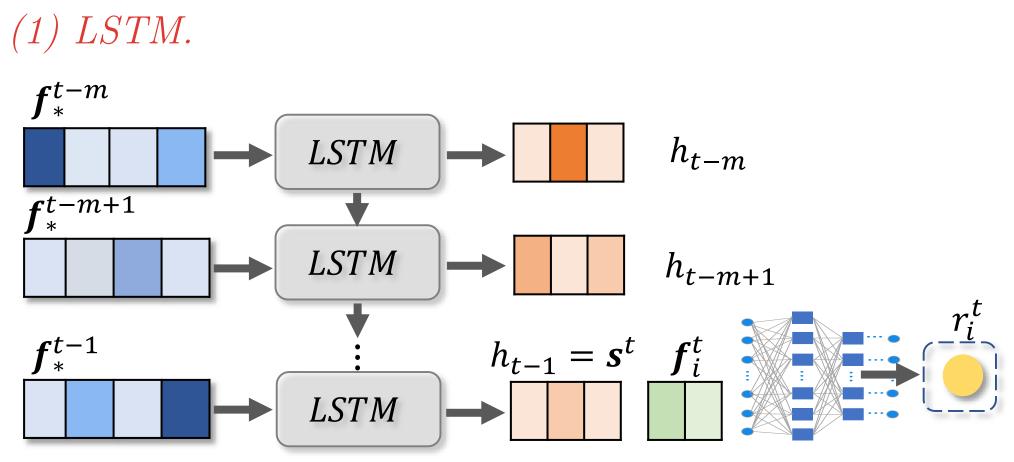


Figure: Architecture of user models parameterized by LSTM

(2) Position weight (PW).

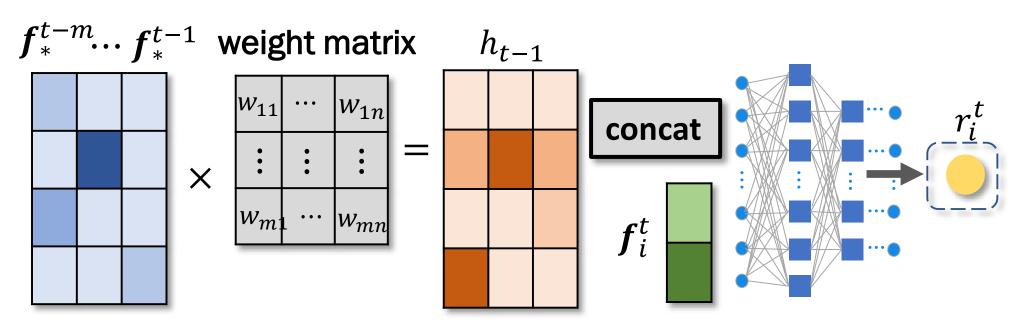


Figure: Architecture of user models parameterized by position weight (PW)

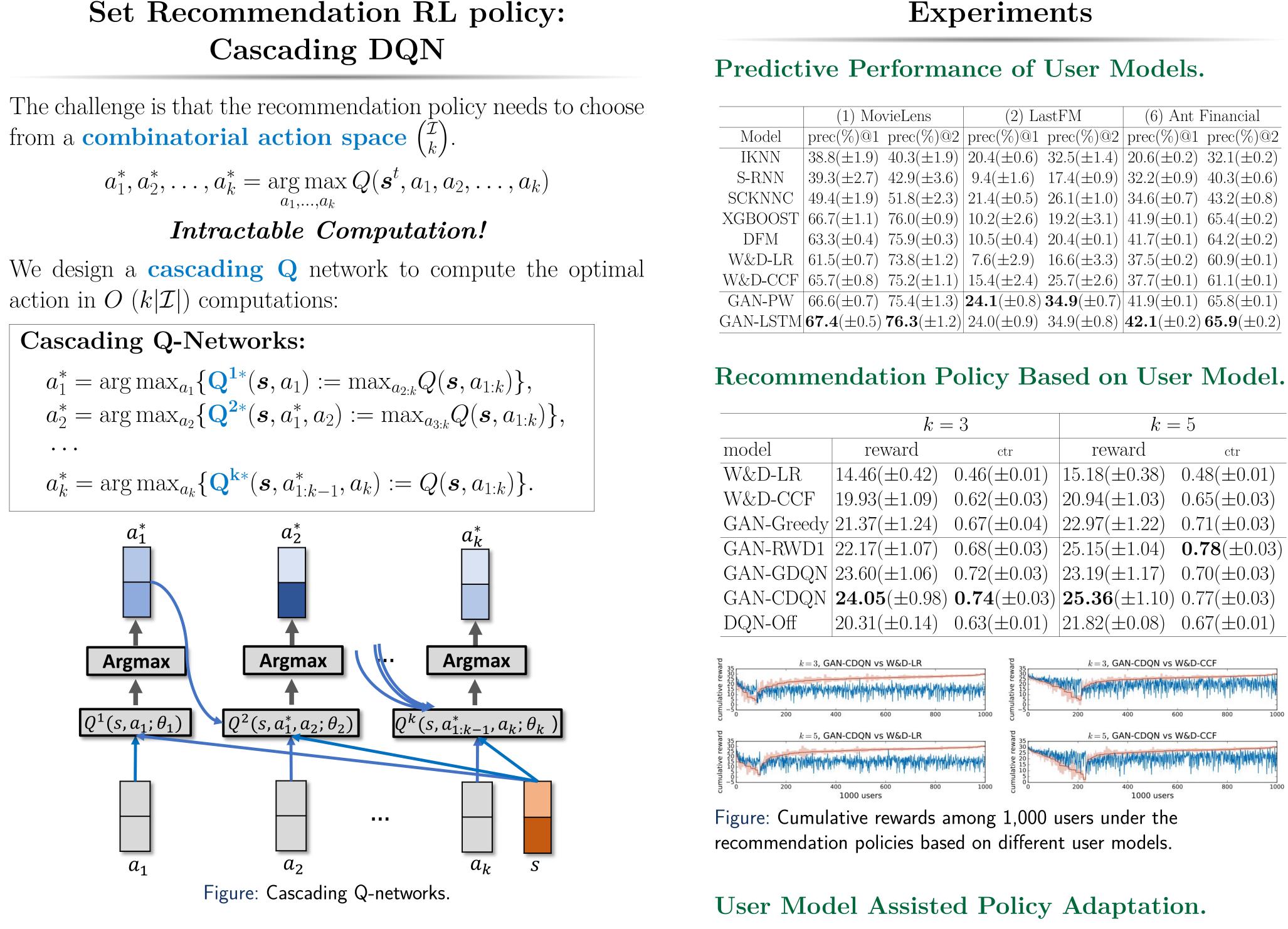
Generative Adversarial Training.

In analogy to generative adversarial networks (GAN):

- $(\phi(strategy))$ acts as a *generator* which generates user's next action based on her state.
- 2r(reward) acts as a *discriminator* which tries to differentiate user's actual actions from those generated by the behavior model ϕ .

$$egin{aligned} \mathbf{Mini-max} \ \mathbf{Formulation:} \ & \min_{ heta} \max_{lpha} \left(\mathbb{E}_{\phi_{lpha}} \Big[\sum_{t=1}^T r_{ heta}(oldsymbol{s}_{true}^t, a^t) \Big] - R(\phi_{lpha}) / \eta \Big) \ - \ \end{aligned}$$

$$-\sum_{t=1}^{T} r_{ heta}(oldsymbol{s}_{true}^{t} a_{true}^{t})$$



Estimation of Q Functions.

The set of Q^{j*} functions need to satisfy

$$Q^{j*}(\boldsymbol{s}, a_1^*, \cdots, a_j^*) = Q(\boldsymbol{s}, a_1^*, \cdots, a_k^*), \quad \forall j$$

We take them into account in a soft and approximate way by defining the loss as

$$(y - Q^j)^2$$
, where $y = r(\mathbf{s}^t, \mathcal{A}^t, a^t) + \gamma Q^k(\mathbf{s}^{t+1}, a_{1:k}^*; \Theta_k), \forall j$.

All Q^{j} networks are fitting against the same target y. In our experiments the set of learned Q^{j} networks satisfies the constraints nicely with a small error:

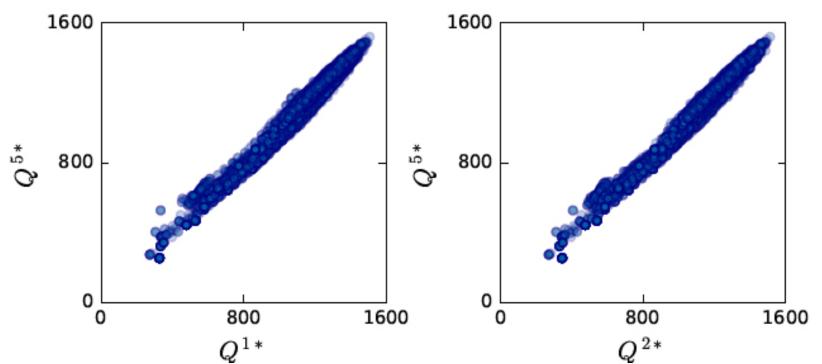


Figure: Each scatter-plot compares Q^{j^*} with Q^{5*} evaluated at the same set of k recommended items. In ideal cases, all points should lie along the diagonal.

Experiments

	(1) MovieLens		(2) LastFM		(6) Ant Financial	
Model	prec(%)@1	$\operatorname{prec}(\%)@2$	prec(%)@1	$\operatorname{prec}(\%)@2$	prec(%)@1	$\operatorname{prec}(\%)@2$
IKNN	$38.8(\pm 1.9)$	$40.3(\pm 1.9)$	$20.4(\pm 0.6)$	$32.5(\pm 1.4)$	$20.6(\pm 0.2)$	$32.1(\pm 0.2)$
S-RNN	$39.3(\pm 2.7)$	$42.9(\pm 3.6)$	$9.4(\pm 1.6)$	$17.4(\pm 0.9)$	$32.2(\pm 0.9)$	$40.3(\pm 0.6)$
SCKNNC	$49.4(\pm 1.9)$	$51.8(\pm 2.3)$	$21.4(\pm 0.5)$	$26.1(\pm 1.0)$	$34.6(\pm 0.7)$	$43.2(\pm 0.8)$
XGBOOST	$66.7(\pm 1.1)$	$76.0(\pm 0.9)$	$10.2(\pm 2.6)$	$19.2(\pm 3.1)$	$41.9(\pm 0.1)$	$65.4(\pm 0.2)$
DFM	$63.3(\pm 0.4)$	$75.9(\pm 0.3)$	$10.5(\pm 0.4)$	$20.4(\pm 0.1)$	$41.7(\pm 0.1)$	$64.2(\pm 0.2)$
W&D-LR	$61.5(\pm 0.7)$	$73.8(\pm 1.2)$	$7.6(\pm 2.9)$	$16.6(\pm 3.3)$	$37.5(\pm 0.2)$	$60.9(\pm 0.1)$
W&D-CCF	$65.7(\pm 0.8)$	$75.2(\pm 1.1)$	$15.4(\pm 2.4)$	$25.7(\pm 2.6)$	$37.7(\pm 0.1)$	$61.1(\pm 0.1)$
GAN-PW	$66.6(\pm 0.7)$	$75.4(\pm 1.3)$	$24.1(\pm 0.8)$	$34.9(\pm 0.7)$	$41.9(\pm 0.1)$	$65.8(\pm 0.1)$
GAN-LSTM	$67.4(\pm 0.5)$	76.3 (±1.2)	$24.0(\pm 0.9)$	$34.9(\pm 0.8)$	$ 42.1(\pm 0.2) $	65.9 (±0.2)

	<i>k</i> =	= 3	k = 5		
model	reward	ctr	reward	ctr	
W&D-LR	$14.46(\pm 0.42)$	$0.46(\pm 0.01)$	$15.18(\pm 0.38)$	$0.48(\pm 0.01)$	
W&D-CCF	$19.93(\pm 1.09)$	$0.62(\pm 0.03)$	$20.94(\pm 1.03)$	$0.65(\pm 0.03)$	
GAN-Greedy	$21.37(\pm 1.24)$	$0.67(\pm 0.04)$	$22.97(\pm 1.22)$	$0.71(\pm 0.03)$	
GAN-RWD1	$22.17(\pm 1.07)$	$0.68(\pm 0.03)$	$25.15(\pm 1.04)$	$0.78(\pm 0.03)$	
GAN-GDQN	$23.60(\pm 1.06)$	$0.72(\pm 0.03)$	$23.19(\pm 1.17)$	$0.70(\pm 0.03)$	
GAN-CDQN	$24.05(\pm 0.98)$	$0.74(\pm 0.03)$	$25.36(\pm 1.10)$	$0.77(\pm 0.03)$	
DQN-Off	$20.31(\pm 0.14)$	$0.63(\pm 0.01)$	$21.82(\pm 0.08)$	$0.67(\pm 0.01)$	

Cascading-DQN policy pre-trained over a GAN user model can quickly achieve a high CTR even when it is applied to a new set of users.

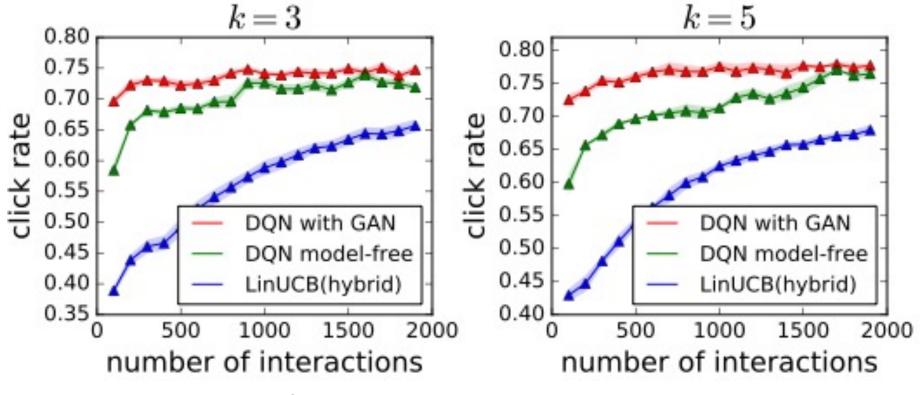


Figure: Comparison of the averaged click rate averaged over 1,000 users under different recommendation policies. X-axis represents how many times the recommender interacts with online users. Y-axis is the click rate. Each point (x, y) means the click rate y is achieved after x times of user interactions.

Contact

Xinshi Chen: xinshi.chen@gatech.edu Le Song: lsong@cc.gatech.edu