
Generative Adversarial User Model for
Reinforcement Learning Based Recommendation System

Xinshi Chen1,†, Shuang Li2, Hui Li4, Shaohua Jiang4, Yuan Qi4, Le Song3,4
{1School of Mathematics, 2Industrial and Systems Engineering, 3College of Computing

}
at Georgia Institute of Technology, 4Ant Financial Services Group

†Work done partially during an internship at Ant Financial.

Introduction: RL for Recommendation

display items

choiceuser

…

state at 𝑡

system

…

state at 𝑡 + 1

display items

choice
…

state at 𝑡 + 2

• A user’s interest evolves over time based on what she observes.
• Recommender can significantly influence such evolution.
•RL based recommenders can consider user’s long term interest.

Challenges.
1 User is the environment =⇒ Training of RL policy requires lots

of interactions with users.
2 The reward function (a user’s interest) is unknown.

Our Solution and Contribution

(1) GAN User Model as a Simulator.

GAN User Model
Simulated Environment

system
RL policy

simulated interaction

We propose
• A Generative Adversarial User Model
− to model user’s action
− to recover user’s reward

• Use GAN User Model as a simulator
− to pre-train the RL policy offline.

(2) Fast Set Recommendation.

display 𝑘 items

all available 𝐾 items

set recommendation

combinatorial action space 𝑲𝒌

We design
• A cascading Q network to compute the optimal action in the

combinatorial action space with only linear computation
complexity.

Generative Adversarial User Model

The user model consist of 2 components:
1 User’s reward r(st, at)
− at is the clicked item.
− st is user’s experience (state).

2 User’s strategy φ∗(st,At)
− At contains items displayed by the system.
− She will make a choice according to a strategy at ∼ φ∗ to
maximize her expected reward.

Generative User Model:
φ∗(st,At) = arg max

φ∈∆k−1
Eφ
[
r(st, at)

]
−R(φ)/η

Model Parameterization.
Two architectures for aggregating historical information:

(1) LSTM.

𝐿𝑆𝑇𝑀

𝒇∗
𝑡−𝑚

𝒇∗
𝑡−𝑚+1

𝒇∗
𝑡−1

ℎ𝑡−𝑚

ℎ𝑡−𝑚+1

ℎ𝑡−1 = 𝒔𝑡⋮ 𝒇𝑖
𝑡

𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀

𝑟𝑖
𝑡

Figure: Architecture of user models parameterized by LSTM

(2) Position weight (PW).

×

𝒇∗
𝑡−1⋯𝒇∗

𝑡−𝑚
weight matrix

𝑤11 ⋯

⋮

𝑤𝑚1 ⋯

concat
𝑤1𝑛

⋮ ⋮

𝑤𝑚𝑛

=
𝑟𝑖
𝑡

ℎ𝑡−1

𝒇𝑖
𝑡

Figure: Architecture of user models parameterized by position weight (PW)

Generative Adversarial Training.
In analogy to generative adversarial networks (GAN):
1 φ(strategy) acts as a generator which generates user’s next
action based on her state.

2 r(reward) acts as a discriminator which tries to differentiate
user’s actual actions from those generated by the behavior
model φ.

Mini-max Formulation:

min
θ

max
α

(
Eφα

[T∑
t=1
rθ(sttrue, at)

]
−R(φα)/η

)
−

T∑
t=1
rθ(sttrueattrue)

Set Recommendation RL policy:
Cascading DQN

The challenge is that the recommendation policy needs to choose
from a combinatorial action space

(
I
k

)
.

a∗1, a
∗
2, . . . , a

∗
k = arg max

a1,...,ak
Q(st, a1, a2, . . . , ak)

Intractable Computation!
We design a cascading Q network to compute the optimal
action in O (k|I|) computations:
Cascading Q-Networks:
a∗1 = arg maxa1{Q1∗(s, a1) := maxa2:kQ(s, a1:k)},
a∗2 = arg maxa2{Q2∗(s, a∗1, a2) := maxa3:kQ(s, a1:k)},
· · ·
a∗k = arg maxak{Qk∗(s, a∗1:k−1, ak) := Q(s, a1:k)}.

Argmax

𝑎1
∗ 𝑎2

∗

…

𝑎𝑘
∗

Argmax

𝑠𝑎1 𝑎2 𝑎𝑘

…

Argmax

𝑄1(𝑠, 𝑎1; 𝜃1) 𝑄2(𝑠, 𝑎1
∗, 𝑎2; 𝜃2) 𝑄𝑘(𝑠, 𝑎1:𝑘−1

∗ , 𝑎𝑘; 𝜃𝑘）

Figure: Cascading Q-networks.

Estimation of Q Functions.
The set of Qj∗ functions need to satisfy

Qj∗(s, a∗1, · · · , a∗j) = Q(s, a∗1, · · · , a∗k), ∀j.
We take them into account in a soft and approximate way by
defining the loss as(
y −Qj

)2
, where y = r(st,At, at) + γQk(st+1, a∗1:k; Θk), ∀j.

All Qj networks are fitting against the same target y. In our ex-
periments the set of learned Qj networks satisfies the constraints
nicely with a small error:

Figure: Each scatter-plot compares Qj∗ with Q5∗ evaluated at the same set of
k recommended items. In ideal cases, all points should lie along the diagonal.

Experiments

Predictive Performance of User Models.

(1) MovieLens (2) LastFM (6) Ant Financial
Model prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2
IKNN 38.8(±1.9) 40.3(±1.9) 20.4(±0.6) 32.5(±1.4) 20.6(±0.2) 32.1(±0.2)
S-RNN 39.3(±2.7) 42.9(±3.6) 9.4(±1.6) 17.4(±0.9) 32.2(±0.9) 40.3(±0.6)

SCKNNC 49.4(±1.9) 51.8(±2.3) 21.4(±0.5) 26.1(±1.0) 34.6(±0.7) 43.2(±0.8)
XGBOOST 66.7(±1.1) 76.0(±0.9) 10.2(±2.6) 19.2(±3.1) 41.9(±0.1) 65.4(±0.2)

DFM 63.3(±0.4) 75.9(±0.3) 10.5(±0.4) 20.4(±0.1) 41.7(±0.1) 64.2(±0.2)
W&D-LR 61.5(±0.7) 73.8(±1.2) 7.6(±2.9) 16.6(±3.3) 37.5(±0.2) 60.9(±0.1)
W&D-CCF 65.7(±0.8) 75.2(±1.1) 15.4(±2.4) 25.7(±2.6) 37.7(±0.1) 61.1(±0.1)
GAN-PW 66.6(±0.7) 75.4(±1.3) 24.1(±0.8) 34.9(±0.7) 41.9(±0.1) 65.8(±0.1)

GAN-LSTM 67.4(±0.5) 76.3(±1.2) 24.0(±0.9) 34.9(±0.8) 42.1(±0.2) 65.9(±0.2)

Recommendation Policy Based on User Model.

k = 3 k = 5
model reward ctr reward ctr

W&D-LR 14.46(±0.42) 0.46(±0.01) 15.18(±0.38) 0.48(±0.01)
W&D-CCF 19.93(±1.09) 0.62(±0.03) 20.94(±1.03) 0.65(±0.03)
GAN-Greedy 21.37(±1.24) 0.67(±0.04) 22.97(±1.22) 0.71(±0.03)
GAN-RWD1 22.17(±1.07) 0.68(±0.03) 25.15(±1.04) 0.78(±0.03)
GAN-GDQN 23.60(±1.06) 0.72(±0.03) 23.19(±1.17) 0.70(±0.03)
GAN-CDQN 24.05(±0.98) 0.74(±0.03) 25.36(±1.10) 0.77(±0.03)
DQN-Off 20.31(±0.14) 0.63(±0.01) 21.82(±0.08) 0.67(±0.01)

Figure: Cumulative rewards among 1,000 users under the
recommendation policies based on different user models.

User Model Assisted Policy Adaptation.

Cascading-DQN policy pre-trained over a GAN user model
can quickly achieve a high CTR even when it is applied to
a new set of users.

Figure: Comparison of the averaged click rate averaged over 1,000
users under different recommendation policies. X-axis represents how
many times the recommender interacts with online users. Y -axis is
the click rate. Each point (x, y) means the click rate y is achieved
after x times of user interactions.

Contact

Xinshi Chen: xinshi.chen@gatech.edu
Le Song: lsong@cc.gatech.edu

