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Bayes’ Rule

Given
1 Prior distribution π(x)
2 Likelihood function p(o|x)
3 Observations o1,o2, . . . ,om

𝑥
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The posterior distribution of unknown parameter x can by com-
puted by Bayes’ Rule:

Sequential Bayesian Inference

Observations o1,o2, . . . ,om arrive sequentially:
𝑥
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An ideal algorithm should:
•Efficiently update p(x|o1:m) to p(x|o1:m+1) when om+1 is
observed

•Without storing all historical observations o1,o2, . . . ,om
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updated posterior current posterior likelihood

Related Works

MCMC
• requires a complete scan of the data
Variational Inference (VI)
• requires re-optimization for every new observation
Stochastic approximate inference
• are prescribed algorithms to optimize the final posterior p(x|o1:M)
• can not exploit the structure of the sequential inference problem
Sequential monte Carlo
• state of art for online Bayesian Inference
• but suffers from path degeneracy problem in high dimensions
• rejuvenation steps can help but will violate online constraints
An Operator View: Kernel Bayes’ Rule
• the posterior is represented as an embedding µm = Ep(x|o1:m)φ(x)
• µm+1︸ ︷︷ ︸

updated embedding

= K( µm︸︷︷︸
current embedding

, om+1 )

• views the Bayes update as an operatior in RKHS

Our Method

Start with N particles

X0 =
{
x1

0, x
2
0, . . . , x

N
0

}
, sampled i.i.d. from prior π(x)

Transport particles to next posterior as the solution of ODEs{
dx
dt = f (X0,o1,x(t), t), ∀t ∈ (0, T ]
x(0) = xn

0

gives==⇒ xn
1 = x(T )

Particle Flow Bayes’ Rule

Particle Flow as a Bayesian Operator

xn
m+1 = F(Xm, om+1,x

n
m) := xn

m +
∫ T

0
f (Xm, om+1,x(t), t) dt.

log qm+1(xn
m+1) = log qm(xn

m)−
∫ T

0
∇x · f dt.

Advantages: Flow Property

There are mainly two obvious advantages of Particle Flow:
1 First, the location of the particles can be moved according to
posterior distribution.

2 Second, the probability density can be computed efficiently because
the change of log-density also follows a ODE.

• Continuity Equation express the law of local conservation of
mass: (1) Mass can neither be created nor destroyed; (2) nor can it
‘teleport’ from one place to another.

∂q(x, t)
∂t

= −∇x · (qf )

• Theorem. If dxdt = f , then the change in log-density follows
d log q(x, t)

dt
= −∇x · f.

Does A Unified Flow Velocity f exist?

Does a unified flow velocity f exist for different Bayesian inference
tasks involving different priors and different observations?

Existence of Flow-based Bayes’ Rule

(1) Langevin dynamics is a stochastic processs
dx(t) = ∇x log π(x)p(o|x) dt +

√
2 dw(t),

where dw(t) is a standard Brownian motion.
• The probability density q(x, t) of x(t) converges to a stationary
distribution, which is the posterior p(x|o).

(2) Stochastic Flow to Deterministic Flow.
• The probability density q(x, t) of Langevin dynamcis follows a
deterministic evolution according to Fokker-Planck equation

∂q

∂t
= −∇x · (q∇x log π(x)p(o|x)) +∇xq(x, t).

• Fokker-Planck equation can be rewritten in the form of Continuity
Equation:

∂q

∂t
= −∇x · (qf ),

where f = ∇x log π(x)p(o|x)−∇x log q(x, t).
=⇒ deterministic flow!

(3) Closed-Loop to Open-Loop: The above deterministic flow is
closed-loop, which depends on flow state q(x, t). We use optimal control
theory to show there exists a unified f which is independent of q(x, t).

Conclusion of a unified f . There exists a fixed and deterministic
flow velocity f of the form

∇x log p(x|o1:m)p(om+1|x)− w∗(p(x|o1:m), t),
which can transform p(x|o1:m) to p(x|o1:m+1) and in turns define a
unified particle flow Bayes operator F .

Parameterization

f (p(x|o1:m), p(om+1|x),x(t), t)⇒ f (Xm,om+1,x(t), t)

• p(x|o1:m)⇒ Xm
Use samples Xm as surrogates, feature space embedding.

• p(om+1|x)⇒ (om+1,x(t))

Overall we parameterize the flow velocity as

f = h
(

1
N

∑N
n=1φ(xn

m), om+1,x(t), t
)
,

where h and φ are neural networks. Let θ ∈ Θ be their parameters
which are independent of t.

Learning Algorithm

Multi-task Framework
• The training set Dtrain contains multiple inference tasks
• Each task T ∈ Dtrain is a tuple

T :=
(
π(x)︸ ︷︷ ︸
prior

, p(·|x)︸ ︷︷ ︸
likelihood

, {o1, . . . , oM}︸ ︷︷ ︸
M observations

)
Loss Function
• The loss for each T is

∑M
m=1 KL(qm(x)||p(x,o1:m)), where qm(x) is

the distribution transported by F at m-th stage.
• Equivalent to minimize negative evidence lower bound (ELBO)

L(T ) =
M∑
m=1

N∑
n=1

(log qm(xn
m)− log p(xn

m,o1:m)) .

• Cumulative loss: L(Dtrain) =
∑
T ∈Dtrain

L(T ).

Experiment 1: Benefits for High Dimension

Multivariate Guassian Model
• prior x ∼ N (µx,Σx)
• observation conditioned on prior o|x ∼ N (x,Σo)
Experiment Setting
• Training set only contains sequences of 10 observations.
• Testing set contains 25 difference sequences of 100 observations.

Figure: Cross entropy Ep(x|o1:m) − log qm

Experiment 2: Multi-Modal Posterior

Guassian Mixture Model
• prior x1,x2 ∼ N (0, 1)
• observations o|x1,x2 ∼ 1

2N (x1, 1) + 1
2N (x1 + x2, 1)

• With (x1,x2) = (1,−2), the posterior has two modes.
To fit only one posterior p(x|o1:m) is already not easy.

(a) True posterior (b) SVI (c) SGLD
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(d) Gibbs Sampling (e) SVI Nonparametric

Our more challenging experimental setting:
• The learned MPF operator will be tested on sequences that are not
observed in training set

• It needs to fit all intermediate posteriors p(x|o1), p(x|o1,o2), . . .

Experiment 3: Hidden Markov Model

Hidden Markov Model - Linear Dynamical System
• xm = Axm−1 + εm, εm ∼ N (0,Σ1)
• om = Bxm + δm, δm ∼ N (0,Σ2)

Marginal posteriors update: →
Transition sampling + FPBR operator:

(i) x̃n
m = Axn

m−1 + εm, (ii) xn
m = F(X̃m, x̃n

m, om+1),
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Figure: Left: cross entropy; Right: Square MMD with RBK kernel.

Experiment 4: Bayesian Logistic Regression

BLR on MNIST dataset 8 vs 6
• Likelihood function p(om|θ) = ycm(1− y)1−cm, where y = σ(θ>φm).
Multi-task Environment
• Reduce the dimension 50 by PCA
• Rotate the first two components by an
angle ψ ∼ [−15◦, 15◦]

predict → observe true labels → update
particles → predict → observe true
labels→ . . .
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