Georgia

Bayes' Rule
Given
 puted by Bayes' Rule

$$
\begin{gathered}
p\left(x \mid \boldsymbol{o}_{1: m}\right)=\frac{1}{z} \pi(\boldsymbol{x}) \prod_{i=1}^{m} p\left(\boldsymbol{o}_{i} \mid \boldsymbol{x}\right) \\
z=\int \pi(\boldsymbol{x}) \prod_{i=1}^{m} p\left(\boldsymbol{o}_{i} \mid \boldsymbol{x}\right) d x
\end{gathered}
$$

Challenging computational problem for high dimensional \boldsymbol{x}

Sequential Bayesian Inference
Observations $\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{m}$ arrive sequentially

An ideal algorithm should:
Efficiently update $p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m}\right)$ to $p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m+1}\right)$ when \boldsymbol{o}_{m+1} is observed
Without storing all historical observations $\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{m}$

$$
\underbrace{p\left(x \mid 0_{1: m}\right)}_{\text {updated posterior }} \propto \underbrace{p\left(x \mid \boldsymbol{o}_{1: m}-1\right)}_{\text {current posterior }} p \underbrace{p\left(\boldsymbol{o}_{m} \mid x\right)}_{\text {ikelinood }}
$$

Related Works
MCMC

- requires a complete scan of the data

Variational Inference (VI)

- requires re-optimization for every new observation

Stochastic approximate inference

- are prescribed algorithms to optimize the final posterior $p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: M}\right)$ - can not exploit the structure of the sequential inference problem Sequential monte Carlo
- state of art for online Bayesian Inference
- but suffers from path degeneracy problem in high dimensions
- rejuvenation steps can help but will violate online constraints

An Operator View: Kernel Bayes' Rule

- the posterior is represented as an embedding $\mu_{m}=\mathbb{E}_{p\left(\boldsymbol{x} \mid \boldsymbol{o}_{\mathrm{I} \mid \mathrm{m}}\right)} \phi(\boldsymbol{x})$ $\underbrace{\mu_{m+1}}_{\text {updated embedding }}=\mathcal{K}(\underbrace{\mu_{m}}_{\text {current embedding }}$,
. views the Bayes update as an operatior in RKHS

Our Method
Start with N particles

$$
\mathcal{X}_{0}=\left\{x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{N}\right\} \text {, sampled i.i.d. from prior } \pi(\boldsymbol{x})
$$

Transport particles to next posterior as the solution of ODEs

$$
\left\{\begin{array}{l}
\frac{d \boldsymbol{x}}{d t}=f\left(\mathcal{X}_{0}, \boldsymbol{o}_{1}, \boldsymbol{x}(t), t\right), \forall t \in(0, T] \stackrel{\text { gives }}{\boldsymbol{x}(0)=\boldsymbol{x}_{0}^{n}} \boldsymbol{x}_{1}^{n}=\boldsymbol{x}(T)
\end{array}\right.
$$

Particle Flow Bayes' Rule

Particle Flow as a Bayesian Operator
$\boldsymbol{x}_{m+1}^{n}=\mathcal{F}\left(\mathcal{X}_{m}, o_{m+1}, \boldsymbol{x}_{m}^{n}\right):=\boldsymbol{x}_{m}^{n}+\int_{0}^{T} f\left(\mathcal{X}_{m}, o_{m+1}, \boldsymbol{x}(t), t\right) d t$.

$$
\log q_{m+1}\left(\boldsymbol{x}_{m+1}^{n}\right)=\log q_{m}\left(\boldsymbol{x}_{m}^{n}\right)-\int_{0}^{T} \nabla_{x} \cdot f d t .
$$

Advantages: Flow Property
There are mainly two obvious advantages of Particle Flow:

- First, the location of the particles can be moved according to posterior distribution.
-Second, the probability density can be computed efficiently because
the change of log-density also follows a ODE
- Continuity Equation express the law of local conservation of mass: (1) Mass can neither be created nor destroyed; (2) nor can it 'teleport' from one place to another

$$
\frac{\partial q(\boldsymbol{x}, t)}{\partial t}=-\nabla_{x} \cdot(q f)
$$

- Theorem. If $\frac{d x}{d t}=f$, then the change in log-density follows

$$
\frac{d \log q(\boldsymbol{x}, t)}{d t}=-\nabla_{x} \cdot f .
$$

Does A Unified Flow Velocity f exist?
$x(0) \sim \pi(x)$
$x(t) \sim p\left(x \mid o_{1}\right)$
$x(T)=x(0)+\int_{0}^{T} f($ inputs $) d t$
Does a unified flow velocity f exist for different Bayesian inference tasks involving different priors and different observations?

Existence of Flow-based Bayes' Rule

(1) Langevin dynamics is a stochastic processs
$d \boldsymbol{x}(t)=\nabla_{x} \log \pi(\boldsymbol{x}) p(\boldsymbol{o} \mid \boldsymbol{x}) d t+\sqrt{2} d \boldsymbol{w}(t)$,
where $d \boldsymbol{w}(t)$ is a standard Brownian motion
The probability density $q(\boldsymbol{x}, t)$ of $\boldsymbol{x}(t)$ converges to a stationary distribution, which is the posterior $p(\boldsymbol{x} \mid \boldsymbol{o})$.
(2) Stochastic Flow to Deterministic Flow

- The probability density $q(\boldsymbol{x}, t)$ of Langevin dynamcis follows a deterministic evolution according to Fokker-Planck equation

$$
\frac{\partial q}{\partial t}=-\nabla_{x} \cdot\left(q \nabla_{x} \log \pi(\boldsymbol{x}) p(\boldsymbol{o} \mid \boldsymbol{x})\right)+\nabla_{x} q(\boldsymbol{x}, t) .
$$

- Fokker-Planck equation can be rewritten in the form of Continuity Equation:

$$
\frac{\partial q}{\partial t}=-\nabla_{x} \cdot(q f),
$$

where $f=\nabla_{x} \log \pi(\boldsymbol{x}) p(\boldsymbol{o} \mid \boldsymbol{x})-\nabla_{x} \log q(\boldsymbol{x}, t)$
\Longrightarrow deterministic flow!
(3) Closed-Loop to Open-Loop: The above deterministic flow is closed-loop, which depends on flow state $q(\boldsymbol{x}, t)$. We use optimal control theory to show there exists a unified f which is independent of $q(\boldsymbol{x}, t)$.

Conclusion of a unified f. There exists a fixed and deterministic flow velocity f of the form
$\nabla_{x} \log p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m}\right) p\left(\boldsymbol{o}_{m+1} \mid \boldsymbol{x}\right)-w^{*}\left(p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m}\right), t\right)$,
which can transform $p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m}\right)$ to $p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m+1}\right)$ and in turns define unified particle flow Bayes operator \mathcal{F}

Parameterization

$f\left(p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1: m}\right), p\left(\boldsymbol{o}_{m+1} \mid \boldsymbol{x}\right), \boldsymbol{x}(t), t\right) \Rightarrow f\left(\mathcal{X}_{m}, \boldsymbol{o}_{m+1}, \boldsymbol{x}(t), t\right)$

- $p\left(\boldsymbol{o}_{m+1} \mid \boldsymbol{x}\right) \Rightarrow\left(\boldsymbol{o}_{m+1}, \boldsymbol{x}(t)\right)$

Overall we parameterize the flow velocity as

$$
f=\boldsymbol{h}\left(\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}_{m}^{n}\right), o_{m+1}, \boldsymbol{x}(t), t\right),
$$

where \boldsymbol{h} and ϕ are neural networks. Let $\theta \in \Theta$ be their parameters which are independent of t.

Learning Algorithm

Multi-task Framework

- The training set $\mathcal{D}_{\text {train }}$ contains multiple inference tasks
- Each task $\mathcal{T} \in \mathcal{D}_{\text {train }}$ is a tuple

$$
\mathcal{T}:=(\underbrace{\pi(\boldsymbol{x})}_{\text {prior }}, \underbrace{p(\cdot \mid \boldsymbol{x})}_{\text {likelihiood }}, \underbrace{\left\{o_{1}, \ldots, o_{M}\right\}}_{M \text { obbervations }})
$$

Loss Function
The loss for each \mathcal{T} is $\sum_{m=1}^{M} \operatorname{KL}\left(q_{m}(\boldsymbol{x}) \| p\left(\boldsymbol{x}, \boldsymbol{o}_{1: m}\right)\right.$), where $q_{m}(\boldsymbol{x})$ is
the distribution transported by \mathcal{F} at m-th stage.
Equivalent to minimize negative evidence lower bound (ELBO)

$$
\mathcal{L}(\mathcal{T})=\sum_{m=1}^{M} \sum_{n=1}^{N}\left(\log q_{m}\left(\boldsymbol{x}_{m}^{n}\right)-\log p\left(\boldsymbol{x}_{m}^{n}, \boldsymbol{o}_{1: m}\right)\right) .
$$

- Cumulative loss: $\mathcal{L}\left(\mathcal{D}_{\text {train }}\right)=\sum_{\mathcal{T} \in \mathcal{D}_{\text {train }}} \mathcal{L}(\mathcal{T})$.

Experiment 1: Benefits for High Dimension
Multivariate Guassian Model

- prior $\boldsymbol{x} \sim \mathcal{N}\left(\mu_{x}, \Sigma_{x}\right)$
- observation conditioned on prior $\boldsymbol{o} \mid \boldsymbol{x} \sim \mathcal{N}\left(\boldsymbol{x}, \Sigma_{o}\right)$

Experiment Setting
Txperiment Setting
Training set only contains sequences of 10 observations
Testing set contains 25 difference sequences of 100 observations.

Figure: Cross entropy $\mathbb{E}_{p\left(x x_{1}, \ldots\right)}-\log q$
Experiment 2: Multi-Modal Posterior
Guassian Mixture Model

- prior $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \sim \mathcal{N}(0,1)$
observations $\boldsymbol{o} \mid \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \sim \frac{1}{2} \mathcal{N}\left(\boldsymbol{x}_{1}, 1\right)+\frac{1}{2} \mathcal{N}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}, 1\right)$
- With $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=(1,-2)$, the posterior has two modes

Our more challenging experimental setting

- The learned MPF operator will be tested on sequences that are not observed in training set
- It needs to fit all intermediate posteriors $p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1}\right), p\left(\boldsymbol{x} \mid \boldsymbol{o}_{1}, \boldsymbol{o}_{2}\right)$,

Experiment 3: Hidden Markov Model
Hidden Markov Model - Linear Dynamical System

Marginal posteriors update: $\rightarrow \quad p\left(x_{1} \mid o_{1}\right) \rightarrow p\left(x_{2} \mid o_{1: 2}\right) \quad p\left(x_{m} \mid o_{1: m}\right)$ Transition sampling + FPBR operator:

Experiment 4: Bayesian Logistic Regression
BLR on MNIST dataset 8 vs 6
. Likelihood function $p\left(o_{m} \mid \theta\right)=y^{c_{n}}(1-y)^{1-c_{m}}$, where $y=\sigma\left(\theta^{\top} \phi_{m}\right)$. Multi-task Environment

- Reduce the dimension 50 by PCA
- Reduce the dimension 50 by PCA
angle $\psi \sim\left[-15^{\circ}, 15^{\circ}\right]$
predict \rightarrow observe true labels \rightarrow update particles \rightarrow predict \rightarrow observe true

