Georgia Tech

Bayes' Rule

Given

1 Prior distribution $\pi(\boldsymbol{x})$

2 Likelihood function $p(\boldsymbol{o}|\boldsymbol{x})$

 (o_1) (o_2)

3 Observations $\boldsymbol{o}_1, \boldsymbol{o}_2, \dots, \boldsymbol{o}_m$

The **posterior distribution** of unknown parameter \boldsymbol{x} can by computed by Bayes' Rule:

$$p(\boldsymbol{x}|\boldsymbol{o}_{1:m}) = \frac{1}{z} \pi(\boldsymbol{x}) \prod_{i=1}^{m} p(\boldsymbol{o}_i|\boldsymbol{x})$$
$$\boldsymbol{z} = \int \pi(\boldsymbol{x}) \prod_{i=1}^{m} p(\boldsymbol{o}_i|\boldsymbol{x}) d\boldsymbol{x}$$

Challenging computational problem for high dimensional **x**

Sequential Bayesian Inference

Observations $\boldsymbol{o}_1, \boldsymbol{o}_2, \ldots, \boldsymbol{o}_m$ arrive sequentially:

$$\begin{array}{c} & (x) \\ & (x) \\ & (y) \\ & (y)$$

An ideal algorithm should:

- Efficiently update $p(\boldsymbol{x}|\boldsymbol{o}_{1:m})$ to $p(\boldsymbol{x}|\boldsymbol{o}_{1:m+1})$ when \boldsymbol{o}_{m+1} is observed
- Without storing all historical observations o_1, o_2, \ldots, o_m

$p(\mathbf{x} \mathbf{o}_{1:m}) \propto$	$p(\boldsymbol{x} \boldsymbol{o}_{1:m-1}) p(\boldsymbol{o}_m \boldsymbol{x})$
updated posterior	current posterior likelihood

Related Works

MCMC

• requires a complete scan of the data

Variational Inference (VI)

• requires re-optimization for every new observation

Stochastic approximate inference

• are prescribed algorithms to optimize the final posterior $p(\boldsymbol{x}|\boldsymbol{o}_{1:M})$

• can not exploit the structure of the sequential inference problem

Sequential monte Carlo

- state of art for online Bayesian Inference
- but suffers from path degeneracy problem in high dimensions
- rejuvenation steps can help but will violate online constraints

An Operator View: Kernel Bayes' Rule

- the posterior is represented as an embedding $\mu_m = \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{o}_{1:m})}\phi(\boldsymbol{x})$
- $= \mathcal{K}($ $, \quad o_{m+1}$) μ_m μ_{m+1} updated embedding current embedding
- views the Bayes update as an operation in RKHS

Particle Flow Bayes' Rule

Xinshi Chen^{1*}, Hanjun Dai^{2*}, Le Song^{2,3}

¹School of Mathematics, ²College of Computing $\}$ at Georgia Institute of Technology, ³Ant Financial Services Group. (* Equal contribution)

$$\log q_{m+1}(\boldsymbol{x}_{m+1}^n) = \log q_m(\boldsymbol{x}_m^n) - \int_0^T \nabla_x \cdot f \, dt.$$

Advantages: Flow Property

There are mainly two obvious advantages of Particle Flow:

- First, the *location* of the particles can be *moved* according to posterior distribution.
- 2 Second, the probability density can be computed efficiently because the change of log-density also follows a ODE.
- **Continuity Equation** express the law of *local conservation of* mass: (1) Mass can neither be created nor destroyed; (2) nor can it 'teleport' from one place to another.

$$\frac{\partial q(\boldsymbol{x},t)}{\partial t} = -\nabla_{\boldsymbol{x}} \cdot (qf)$$

• **Theorem.** If $\frac{dx}{dt} = f$, then the change in log-density follows ()

$$\frac{d\log q(\boldsymbol{x},t)}{dt} = -\nabla_x \cdot f.$$

Does A Unified Flow Velocity *f* exist?

$$x(0) \sim \pi(x)$$

$$x(t) \sim p(x|o_1)$$

$$x(T) = x(0) + \int_0^T f(inputs)dt$$

Does a *unified flow velocity* f exist for different Bayesian inference tasks involving different priors and different observations?

where h and ϕ are neural networks. Let $\theta \in \Theta$ be their parameters which are independent of t.

Existence of Flow-based Bayes' Rule

(1) Langevin dynamics is a *stochastic* processs

 $d\boldsymbol{x}(t) = \nabla_x \log \pi(\boldsymbol{x}) p(\boldsymbol{o}|\boldsymbol{x}) dt + \sqrt{2} d\boldsymbol{w}(t),$

where $d\boldsymbol{w}(t)$ is a standard Brownian motion.

• The probability density $q(\boldsymbol{x},t)$ of $\boldsymbol{x}(t)$ converges to a stationary distribution, which is the posterior $p(\boldsymbol{x}|\boldsymbol{o})$.

(2) Stochastic Flow to Deterministic Flow.

• The probability density $q(\boldsymbol{x},t)$ of Langevin dynamics follows a *deterministic* evolution according to **Fokker-Planck equation**

$$\frac{q}{dt} = -\nabla_x \cdot (q\nabla_x \log \pi(\boldsymbol{x}) p(\boldsymbol{o}|\boldsymbol{x})) + \nabla_x q(\boldsymbol{x}, t).$$

• Fokker-Planck equation can be rewritten in the form of **Continuity** Equation:

$$\frac{\partial q}{\partial t} = -\nabla_x \cdot (qf),$$

where $f = \nabla_x \log \pi(\boldsymbol{x}) p(\boldsymbol{o}|\boldsymbol{x}) - \nabla_x \log q(\boldsymbol{x}, t)$. \Rightarrow deterministic flow!

(3) Closed-Loop to Open-Loop: The above deterministic flow is closed-loop, which depends on flow state $q(\boldsymbol{x}, t)$. We use optimal control theory to show there exists a unified f which is independent of $q(\boldsymbol{x}, t)$.

Conclusion of a unified f. There exists a fixed and deterministic flow velocity f of the form

 $\nabla_x \log p(\boldsymbol{x}|\boldsymbol{o}_{1:m}) p(\boldsymbol{o}_{m+1}|\boldsymbol{x}) - w^*(p(\boldsymbol{x}|\boldsymbol{o}_{1:m}), t),$

which can transform $p(\boldsymbol{x}|\boldsymbol{o}_{1:m})$ to $p(\boldsymbol{x}|\boldsymbol{o}_{1:m+1})$ and in turns define a unified particle flow Bayes operator \mathcal{F} .

Parameterization

 $f(p(\boldsymbol{x}|\boldsymbol{o}_{1:m}), p(\boldsymbol{o}_{m+1}|\boldsymbol{x}), \boldsymbol{x}(t), t) \Rightarrow f(\mathcal{X}_m, \boldsymbol{o}_{m+1}, \boldsymbol{x}(t), t)$

• $p(\boldsymbol{x}|\boldsymbol{o}_{1:m}) \Rightarrow \mathcal{X}_m$

Use samples \mathcal{X}_m as surrogates, feature space embedding.

• $p(\boldsymbol{o}_{m+1}|\boldsymbol{x}) \Rightarrow (\boldsymbol{o}_{m+1}, \boldsymbol{x}(t))$

Overall we parameterize the flow velocity as

$$m{r} = m{h}\left(rac{1}{N}\sum_{n=1}^{N}\phi(m{x}_m^n), o_{m+1}, m{x}(t), t
ight),$$

Learning Algorithm

Multi-task Framework

• The training set $\mathcal{D}_{\text{train}}$ contains **multiple inference tasks** • Each task $\mathcal{T} \in \mathcal{D}_{train}$ is a tuple

$$\mathcal{T} := \left(\underbrace{\pi(\boldsymbol{x})}_{\text{prior}}, \underbrace{p(\cdot|\boldsymbol{x})}_{\text{likelihood}}, \underbrace{\{o_1, \dots, o_M\}}_{M \text{ observations}}\right)$$

Loss Function

• The loss for each \mathcal{T} is $\sum_{m=1}^{M} \operatorname{KL}(q_m(\boldsymbol{x})||p(\boldsymbol{x}, \boldsymbol{o}_{1:m}))$, where $q_m(\boldsymbol{x})$ is the distribution transported by \mathcal{F} at *m*-th stage.

• Equivalent to minimize negative evidence lower bound (ELBO)

$$\mathcal{L}(\mathcal{T}) = \sum_{m=1}^{M} \sum_{n=1}^{N} \left(\log q_m(\boldsymbol{x}_m^n) - \log p(\boldsymbol{x}_m^n, \boldsymbol{o}_{1:m}) \right).$$

we loss: $\mathcal{L}(\mathcal{D}_{\text{train}}) = \sum_{\mathcal{T} \in \mathcal{D}_{\text{train}}} \mathcal{L}(\mathcal{T}).$

Experiment 1: Benefits for High Dimension